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A SIMPLE ‘SYNTHESIS’-BASED METHOD OF VARIANCE COMPONENT ESTIMATION

by

II. 0. Hartley*, 3. N. K and Lynn LaNotte~

1. Introduction

In this paper we do not attempt an evaluation of the ever growing methodology

in the estimation of variance components. (For an excellent summary of the literature

up to 1971 see Searle (1971).) Optimality properties are sometimes achieved at consi-

derable computational efforts. A case in point is the M. L. estimation (see Hartley &

Rao (1967)) which is still fairly laborious for large data banks in spite of the improve-

ments through the W—transformation (Henmierle & Hartley (1973)). Similar observations

apply to the general case of Minque (C. R. Rao (1971)) recently simplified by Liu &

Senturia (1976). Other methods, such as the Henderson 3 Method (Henderson (1953)) or

the Abbreviated Doolittle and square root method (see e.g. Caylor, Lucas and Anderson

(1970)) depend on a subjective ordering of the components (such as with the Fuiward

Doolittle procedure) and if the ordering is unfortunate the method may fail to yield

estimates for certain components while with a different ordering (not attempted) all.

components may well be estimable. The work involved in attempting all possible order-

ings of the variance components is usually prohibitive. The present method achieves

optimality properties and is nevertheless computationally simple. In fact it possesses

Minque optimality for a particular choice of norm, but also various other optimality

properties and necessary and sufficient conditions for estimability associated with

Minque simplify considerably (see Section 6). Moreover we are able to derive suffi-

cient conditions for consistency which also provide estimability conditions of a simpler

structure (see Appendix). The consistency of our estimators makes them convenient as

starting points for a single ML cycle to obtain asymptotically fully efficient estimates.

2. The Mixed ANOVA Model

Employing the currently used ,notation we write the mixed ANOVA model in the form

*11. 0. Hartley, Institute of Statistics , Texas A&M University
+J. N. K. Rao, Carleton University, Ottawa \S Lynn LaMotte, Quantitative Management Science , 

~~~~~ 
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c+1 .

y — X a +  ~ (1)
i—i

where

y is an n x 1 vector of observations,

X is an n x k matrix of known coefficients ,

~ is a k x 1 vector of imknown constants,

U1 
is an n x m~ matrix of 0, 1 coeff icients,

bi 
is an ni~ x 1 vector of normal variables from N(O, o~).

Specifically U = I and b is an n—vector of “error variables”.c+l n c+1

Moreover the design matrices U~ have precisely one value of 1 in each of
c

their rows and all other coefficients 0. We denote by m — 1 m~ the
i=l

total number of random levels..

We may assume without loss of generality that

x ’ x — I  (2)

for if (2) is not satisfied we may orthogcnalize X by a Gram Schmidt

orthogonalization process with a consequential reparameterization of a

omitting any linearly dependent columns in the Gram Schmidt process.

Usually the first column of X is the column vector with all elements =

i/vc. It is the objective of the method to compute estimates of the

variance components and the vector a.

3. The Present Method

The essence of the present method is to

(a) Select c+l quadratic forms Q (y) in the elements of y.
~ S $act~s

(b) Use the method of synthesis (Hartley (1967) , Rao (1968) ) to ~~~~~~~ 0ci
obtain the coefficients  k

u 
in the formulas for E(Q~) in the

form 
.

L 
_ _

_ _  - — —.--- - -- -
. 

—-___ -



C+1 2E(Q~) — E k 4j ai • (3)
.1

(c) Estimate by equating the computed Q~ to their expectations

i.e. by inverting the system (3) to compute the vector with

elements

—

,~ — K ,~(y) (4)

from the vector with elements Q
3

(y) where K = (k~~) with

rank to be discussed in Section 6 and 7.

(d) Replacing any negative elements of by 0 , with consequences

to be discussed in Section 7.

We now give more details for (a) , (b) and (c) :

(a) The Q~(~) will be based on contrasts which do not depend on

any elements of a. Accordingly we orthogonalize all U~ matrices

on X and construct matri ces V~ orthogonal on X as follows: De-

note by u(t ,i) the tth column vector of U1 and by x(r) the rth

column vector of X then the columns v( t ,i) of V~ are given by

k
v(t ,i) = u( t ,i) — E x(r) (x ’(r )u (t , i)}

r—1
or (5)

- vi m U i _ x x ,Ui .

We now choose the c+l quadratic forms Q~(~) as

Y ’V
J

V~Y (V~y) ’V~y j  — 1, ..., c+1 (6)

(b) It follows from the method of synthesis (see Hartley (1967) ,

J. N. K. Rao (1968) ) that -

...

~ 

. - , 
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c+1 2EQ(y) — £ k 1a1 with
i—i 

. (7)

k E (V ’ u(t ,i)~~~(V’ u(t ,i))
~

Now since v(t,j) is orthogonal on any x(p) (i.e. since

v’(T,j)x(p) 0) we can write the ~~ in the alternative form

— £ (V~ v(t,i))’(V~v(t,i))

(8)
£E (v ’(r,j ) v(t ,i )) ’
tt

showing that ~~ —

An alternative form of k is

— tr{ (V~V~)(V 1V~)} . (9)

We shall show in Section 6 that the symmetrical matrix

K ~ (k~1) will have full 
- rank c+l if the n x n matrices V1V~

are not linearly dependent.

(c) We shall also show in Section 6 that the system of equations

- ~~= K Z2 (10)

is consistent even if the rank of K is degenerate. Solving

(10) in the form -

(11)

we shall , of course, be particularly interested in the full

rank case when IC - 1(1.

4. j~~ Computational Load

It may be helpful to give an idea of the computational efficiency of

the present method by tabulating the nu~~er of products involved In the

S .

_ _ _ _ _ _ _ _ _  

~~~~~ I. —— -
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main operations of the algorithm. To this end we first note simplified

versions for the k
~+1,1: Observing that U~~1 — I we have from (5) that

V — I — XX’ and since X I X I we find that V V t — I — XX’ andc+l c+1 c+l

finally from (9) that

— tr (I — XX’)(l — XX’) — tr (I - XX’)]
(12)

— n — k .

Similarly we find that

— tr {(I —

— tr {V~V~ — xx’v~vp (13)

— t r V~V~ .

Further we note the form of V~~1y .t•c..

V~~1y y — XX’y . (14)

Def ining now the adjoined matrices

U — (U
1 

... J U )  V — (V
1 

... V )  (15)

the bulk of the work consists of the formation of the elements of the

symmetrical matrix V’ V V’U — U ’V. The elements of this matrix are

assembled in submatrices in accordance with the par tition (15) as shown

~n the Schedule 1 below where it must be remembered that the range of

the column index t depends on i and is t 1 ..., m~ and the range of

— 1, ...
~~ 

mj  so that the submatrix V~UJ~ has dimensions mj  x m~ . The

for i > j  — 1 , ..., p are then obtained by forming the sums of

squares of the elements in each submatrix in accordance with (7) .

Finally, we recite the formulas for the remaining coefficients in

the equations (10) . The k and k 
~ 

are computed from (12) andc ~~,

_ _  — -

.. 

- 

~~~~~~~~~~~~~~~~ 

_
~~~~~~~~~~\~~
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Schedule 1: Submatrices of V’U

U1 
U
2 

. . . U

. V
1 

y(r,1)’u(t,l) v(r ,l)’u(t,2) . . . v
1
(t,1)’u(t,c)

V
2 v(t,2)’u(t,2) . . . v(-r,2)’u(t,c)

v(r ,c)’u(t,c)

(13) respectively and the right hand sides of Q~ (~ ) from the second form

in (6) for j — 1, .. ., c while Q~~1
(y) is given in accordance with (14) by

— y ’y — (X ’y) ’(X’ y) . (16)

We can now summarize the approximate number of products involved in

the various operations of the algorithms.

Operation Approximate No. of Products Involved 
—

(1/2)k~ (k~ — 1)n
Orthogonalization of X’X +where k — LI of columns in original X

X ’U~ i 1 .,...,c knm

X(X ’U
1
) i — 1, ..., c nn~
(equation (5)) 

— —

tJ’V -V ’V 
0

(Schedule 1) Subtotals of elements of v(t,i)

i1j — 1 ..., c (1/2)m(uri-1)

— 

(equation (7))

i — 1 ...~~ c

(equa tion (13))
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Operation Approximate No. of Products Involved

o
(equation (12))

Q~(~
) j = 1, ..., c+l (nt~~+l) (n+1)

(equations (6) , 2nd form
and (16))

The import an t point is that the number of products is only a linear

function of the nur~ber of data lines n. An approximate formula for the

total number of products is n{~ k (k — 1) + (2~~-1) (k+1) )

5. A Numerical Example

A small numerical example with n = 4, k~ — 3, k — 2, c 1, m.~ = 2,

in — 2, in2 n = 4 is shown in schedule 2 below.

Schedule 2: A_Numerical Exam~le of a Mi xed Model

y X Original U1 U
2 

X new V
1

4 1 1 0 1 0 1 0 ~ 0 (1/2) (1/2) +(l/2)  —(1/2)

2 1 1 0 0 . 1 0 1 0 0 (1/2) (112) —(1/2) +(l/2)

1 1 0 1 0 1 0 0 1 0 (1/2) —(1/2) 0 0

2 1 0 1 0 1 0 0 0 1 (1/2) —(1/2) 0 0

The orthogonolization of X (original) to X (new) follows the standard Gram

Schmidt procedure and reduces the k+ 
— 3 dependent columns to k 2 columns

which are orthogonal and standardized. Note that 
-

x(2)~ 0~, ~~ 
x(2) old — (1/2) x(l) old and

x( 3)old — x(l) - x(2) must be eliminated.

Using now x(r) — x(r)~~j , we orthogonalize U1 on X and compute (see ~~~

- S e •

- ---—- 

. 
- -
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x’(l) u(l ,1) — +(1/ 2) ,  x’(2) u(l ,l) +(l/2)

and hence

v(l,l) u(l ,1) — (l/2)x(l) — (1/2)x(2)
likewise

x’(l) u(2,1) = (3/2), x’(2) u(2,l) = —(1/2)

and hence

v(1,2) = u(2,l) — (3/2)x(l) + (l/2)x(2)

This yields the matrix V1 in schedule 2 which has only one independent

• column. The elements of V~U1 require the computation of

v(1,l)’ u(l ,l) = (1/2); v(1,1)’ u(2 ,l) v(2 ,l) ’ u( 1,1) = —(1/2)

and

v(2.,l)’ u(2,1) = 1/2 with sum of squares of k11 — 4(1/2) 2 
= 1.

Further (equation (12)) k22 = 4 — 2 — 2  and (equation (13)) k12 k
21

.=

4(1/2) 2 + 4(0)2 = 1 so that the K matrix is given by K = (~ ~)

Finally, (equation (16))

4
2 + 22 + i2 + 22 _ (

1
9)2 — (1 3)2 = 25— ~~~~~~ 25— 22.5 2.5

a~d (equation (6)) Q1
(v) = (~~~ 

2) 2 + (f(_2))2 
= 2 .

The solution of Q — KZ
2 
therefore yields o~ — 1/2 , 1.5

6. ~p~timality Properties and the Consistency of the Equations

The estimators described in Section 3 may be seen to be “best at 0 ,

i — 1, ... , c, — 1” as defined by L. R. LaMotte (1973). Therefore, the

consistency of equation (10), regardless of the rank of K , is established as

Lemma 4 by LaMotte (l973)~ That the estimators defined by (11) are “best”

among invariant quadratic unbiased estimators guarantees that they are admissible

in that class: that is, no other invariant quadratic unbiased estimators have

uniformly less variance for all a. Further, as noted by LaMotte (1973) , the

estimators (11) have the property that in any model foi which a uniformly best

I.,

~~~~ — —_ — ... —-- —- _ _ _ _



estimator exists, (11) will be uniformly best. Finally , it may be seen

that the “synthesis” estimators (11) are also MINQUE as in Rao (1971,

Section 6) with V = 1. No claim is made that this choice of the norm has

any particular merits among the rather general family of the norms covered

by Minque formulas. How~ver,it appears to be reasonable to us that in the

absence of any theoretical criteria for selection of Minque no rms a norm

leading to simple estimators may be regarded as meritorious.

Following Section A5 in LaMotte- (1973), It may be seen that the rank

of K is equal to the number of linearly independent matrices among ~~~~

I = 1, ..., c+l. Thus a singular K may occur if the U
1
U~ matrices are not

all linearly independent or if there exists (see (5)) a linear combination

of the U
1
U~ matrices whose columns are contained in the linear subspace

spanned by the columns of X. In the first case the singularity is caused

by the design leading to the U
1 

matrices , while in the second the singularity

is caused by confounding fixed and random effects. In either case, (10)

is consistent but some linear combinations of the variance components can

not then be unbiasedly estimated. We should stress however that other 4

special cases of Minque (not necessarily Invariant to a) may also deserve

particular attention.

-

_ _- _ _  

~~~~~~~~~~~~~~~~~~~~
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APPENDIX

The Asymptotic Consistency of a -

In discussing the asymptotic behavior of 02 it is of course necessary to

specify the limiting process under which such properties are supposed to hold .

Clearly it is necessary for the consistent estimation of the variances =

Var bi that the number of elements rn1 in the vectors b1 all t end to ~~~. For the

identity matrix U +l we have m
~+1 

= n the overal sample size. For the re-

maining rn
1 we assume that their limiting behavior is related to n by

1—a l— a
tn i < m

i
< U n (17)

where 0 < < 1 and L , U are universal constants . More specifically we assume

that 0 but a1 
> 0 for i = 1, ..., c. Generalizations to situations in

which a1 0 for several components are under consideration.

Denote now by

v(t, 1) — number of elements in u(t, i) which are 1 (18)

v(t, 1; r , j) number of rows in which both u(t, i) and

u (r , 3) have elements 1. (19)

Using these concepts we introduce the following conditions of ‘pseudo orthogon—

ality ’ of the u(t , i) vectors. We assume tha t

aj  UI
-c v(t , 1) -c u n (20)

(where L , u are universal constants) and that

-— 

- 

- _ _ _ _ _ _ _ _ _ _ _ _
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v(t, 1; r, 3) — o(v(t, 3))

- • (2 1)
i~~~ J w i t h i l , . . . , c + l

a n d j — l , . . . , c

ni~
The relationship between (17) and (20) is obvious since ~ v(t, 1) = ii so that

(20) implies (17) with U — and L — and the stronge: condition (20) implies

a uniform order of magnitude for all v(t, 1) in a given U1
. Since the columns

of the U~ matrices are orthogonal we have ‘v(t, 1; r, i) = 0 for all pairs t ~ t.

For columns u(t, I), u(-t - , j )  with I 
~ 3 condition (21) is satisfied if there is

an asymptotically uniform distribution of the v(t, I) rows for which u(t, i) has

elements 1 over a fraction qm
3 
of the m

3 
columns of U

3 
where 0 -c q -c 1 since the

fraction of v(t, 1) which gives rise to v(t, 1; r, 3) will be 0(q~~m 
_1
)

U - i  3
O(n ) and will tend to zero.

Next we must introduce conditions on the orthogonal standardized mat r ix  X

with elements x . Denote by ~ x2 the sum of x2 over those rows for whichsr s(t,i) 
er sr

u(t, i) has a 1 element then we assume that

a — 1
~ x2

r
_O(n

i 
) (23)

s(t,i) ~

a1Since 
~ ~~~ 

— 1 and the number of terms in is v(t, i) — O(n ) condition
s s( t,i)

(23) implies that asymptotically the have a uniform density X2 0(n ’).

Finally we place on record a consequence of conditions (18) to (23): it

follows from (5) using (18), (19), (23) and Schwartz’ inequality that

_ _ _ _ _ _ _ _ _ _  -I-
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2~~-i
v(t, i) + 0(n ) for t — T, ~ —

2a
1
—l

u’(t, i) v(r , 3) — 0 + 0(n ) for t ~ t , 1 = 3 (24)

- v(t, i; t , 3) + 0(n ~ ) for I 
~ 3

We now turn to the asymptotic behavior of the ~~~ and k
13
. Prom (8), (17), (20),

and (25) we have tha t

m~ in
3

— ~ (u ’(t, i) v (r , j ))2

t 1 r l

..~2 ~~ r
~ ~ u’ (t , i) v(t, I) ~ + ~ ~ u’(t, i) v ( r , i) 3 (25)
t=l L J

l_aj+2ai 2—2 a1+4~1—2
> Const n + 0(n )

- l+u
> C  n for all I — 1, .. ., c +  1

From (8) , (17), (19) , (21) and (24) we have for i 
~ 3; 

1 — 1, ..., c+1;

ni~ in
3 •

— 
~ [u ’(t. i) v(t, 3))

t—l t—l

inml in a+a -J.
— v(t, I; r, j )2 + 0(n ) “(t , i; ~~, 3)

t -r t t

m a1 3 2a +2a —2
~~~~ 0(n )

t •r

a3
— } o(v(t, i)) r v(t, i; 1, 3) + 0(n )n (26)

t

2—a1=u+ O(n 3)0(n )

— 

.

- -

~~~ - -  _ _ _ _ _ _ _ _ _ _  _ _ - _ _ _ _  --

~~~~

--
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ai+u i+u 0 
-

— o(n I ) + 0(n i) — o(n ~) (26)

since a
3 

-C 1. Similarly we prove by symmetry that k~3 
— o(n 3 ) for  1 

~ 
j  -c c.

From (25) and (26) it is clear that for all large n the c x c matrix k
1 

for

i, 3 = 1, ..., c is asymptotically diagonal with diagonal coefficients > cn

while the coefficients k
c+i j are asymptotically equal to o(n). Moreover it i~

obvious from (12) that kc+i c+l > Cn. Using therefore the first c equations

of Kc~
2 = 9(y) we obtain that

—a —l u —l
— 0(n ) {Q

1
(y) — o (n)a 2

~+1} — 0(n ~ )Q
1

(y) + o<n l
)02c+l

for i — l , ..., c (27)

Substituting (27) in the last equation we obtain

i—U C
{cn + o(n mm ) )  — + ~ Q~ (y) o(n ) (28)

i—l

or

C —~~—la
~+l 

= 0(n~~ )Q~÷1
(y) + 

~ 
Q~

(
~) o(n ) (20)

i—i

Substituting (29) back in (27) we obtain

—a —l -l—U
— 0(n ~ ) Q1

(y) + o(n ~ ) Q~~1(y) (30)

Equations (29) and (30) show that a2 is estimable from the Q
1
(y). They also

show that o2 is consistent provided we can show that

- 

- 
-
~~~~~~~~~~

-
~~--~
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Var 
~~~~ 

— o(n r

2 for r 1, . .., c (31)
Var 

~~~~~~~ 
— o~n )

since CovQ~(y)Q3
(y) = 0(VarQ

i
(y)½ VarQ

3
(y)5.

In order to prove the first result in (31) we use formulas [22), [32]

[33) and [34) of J.N.K. Rao (1968) with slightly altered notation. Formula [22)

gives E Q
~
(y) In the form

c+l c+1 c+l
E(Q (y) 2 ) = 2 

~ 
c~ o~a

2 + ~ c~~a~ + ~ 
h1y4~ (32)

icj—l i—i i—l

where = E b~t are the 4th moments of the elements b
1~ 

of b
1
. Noting that

Var Q (y) = E 
~r~~~

2 — E2(Q~ (y)) the leading terms of c~1 
and c~ 3 

given by

J.N.K. Rao ’s equatI ons [33) and [32) cancel and we are left to consider the orders

of magnitude of

UI
’

~ii
.2h

i 
— 

~ r~~~~~
’ I) + u ( r ,  ~~ — Qr~~~

t
~ 

I)) — Q
r
(t
~~
T
~ 
i)}2

t-ct=l

m

— 
~ ( ~ 2(u(t, I)’  v(s , r)) (u(r ,  1)’ v(s , r))}2

t-ct—l s’4

Consider first the case r — i. We distinguish two terms when s = t and s — r.

For those two terms (u(t, i)’ v(s , 1)) (u(T , 1)’ v(s , I)) is from (24) of the
a2a —l 3a —l r

order of magnitude 0(n ) O(n ) — O(n ). For the remaining terms in
e—l

the product is of the order 0(n ) but the number of terms is of the order
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- i—a 6a —2 • 22a 6a —2
0(n i) so that {Z}2 is 0(n ~ ) and hence — 0(n i) 0(n ~ ) —

0(n ~) — o(n ) since 1. -

Consider next the case r ~ i and r c + 1. We have from (33) and (24)

2a +2a —2
c
1~ ~ 

{~ (v( t , 1; s, r) v(t, i; s, r) + 0(n 1 r

t<r ~

a +a —l
+ 0(n i r 

~ 
(v(t , i; s, t) + v(r, i; 5,

fll
j

— ~ {o(v(s , r ) )  
~ v (r , 1; s, r) + 0(n 1 r

t<-r S -

(34)
a +a -1

+ 0(n 
i r 

~ (~~(t, i) + v ( r ,  i))}2

InI a +a 2a4+a —l
—

~~~ ~ {o(n r 
~ 
+ 0(n r )}2

t-c•r -

2+2a a +2a +1 2a +2ar) + ( i r .)+O( i Z•
)

2+2a
r— o(n ).

The case r ~ i r c + 1 follows on the same lines as (34) except that a — 0

and that v(t, i; s, c+l) v(T, i; s, c+l) — 0 since u(s , r) has a 1 only in the

5
th row and either u(t, i) or u(t, i) have a zero in that row. The order of

2a —l 2a
1magnitude of (1 will therefore be 0(n ) and c~~ will be 0(n ) — o(n2).

The treatment of the C
13 

in J.N.K. Rao’s formula [33] follows on similar

lines to the above proof for the c~1 if of the two alternatives i 
< 3, 3 1

in (21) the smaller a1, a3 
is selected for majorisations.
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It remains to consider the terms

- 
~ Q~(u(t , i)) - I ( ~ (u’(t, I) v(s , r ) )2)2 (35)
t—l 

r 
t—l s 1

For the case r — i we have using (24)
I— U~$

— 
~ 

((u’(t, i) v(t, i))2 + 
~ (u ’(t, 1) v(s , j))2}2

t—1

2a 3a -l
— ~ {0(n I) + 0(n i )}2 (36)

t—i

l+3a1 4u~0(n ) + 0 ( n  ) + 0 ( n  )

2a +2 2a +2
— o(n ) o(n r for i = r ~~~c + l ,

‘.o(n2) for i = r = c + l .

For the case i~~~r and r~~~c + l

in in
i r

— ~ 
{ ~ (v( t, 1; s, r) + 0(n ~ r

t—l s—i

in inI r
— 
~ 

( ~ o(’~(s, r ) )v ( t, 1; s, r) + 0(n r 
~~ 

v(t, 1; s, r)
t 1  s—i s

i—a ~a +2a —2
+ 0(n r) 0(n i r ) ) 2 (37)

a+a 2a +u —1
— 
~ 

o(n i r) + 0(n ~ T )}2
t— 1

a +2a- +i 2a +2a 3a +2a —1
— o(n I r 

~ + o(n i r) + 0(n ~ r
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2+2a
— o(n 5 - (

Finally for r C + 1, i ~ r we have

in

— ~ I ) (v(t , 1; s, r) +
t l  s i  -

a — i  2a —j. 2 
(38)

— ~ I ~ v( t , 1; s, r) 2 + ~ v(t , 1; a , r) 0(n ) + 0(n
t—l s a

tbw since v( t, i; a, c + 1) is either 0 or 1 we have that ~ v(t, i; s, c + 1)2

} v(t, 1; a , c + 1) — v( t , 1) so that
a

a
1. a 2~~-i

h1 
— ~ {0(n ) + 0(n I )}2 (39)

t—l

i—a 2a
— 0(n i) 0(n i)

— o(n2).

Since 2 is unbiassed and Coy (;2) ~. 0 as n • it follows that ~2 is

consistent. Moreover if we replace any negative a~ by 0 the resulting statistic

say &~ has a smaller mean square error and hence is also consistent.

-

~~~~~~~~~
— 

-~~~~— -
~~~ 

- -  — . _ _ _ _ _  _ _ _ _  _ _ _ _
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The consistent estimator may serve as.a starting value for the

iterative maximum likelihood estimation procedure described by Heurterle

and Hartley (1973). Under certain regularity conditions (not discussed

here) one single cycle of the iteration will result in asymptotically

efficient estimators of ~2 and a. If the iteration is carried to convergence

solutions of the ML equations are reached. If no ML cycles are performed

a consistent estimator ~ of a can be computed from the generalized least

squares (ML) equations.

— (X’H~~X)~~(x’H~~y)
(40)

2
C

vhere }l—I  + E , U U ’
i—l ~~c+1

It has been shown by Hernmerle and Hartley (1973) that (40) can be computed

directly from the U
1U and X ’U1 matrices without the inversion of the

X n matrix H using their so called V transformation. In fact the W0

matrix (their equation (19)) is essentially given by the V~V~ matrices

(see the above Schedule 1) and by the contrasts V~y required in the computation

of Q~(y).

The variance covariance matrix of ~ can likewise be computed through

the V transformation.
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